import pandas as pdimport numpy as npimport os,sysdf = pd.read_excel("C:\\Users\\ryanzhang\\Desktop\\template.xlsx")a = df.columnsb = pd.DataFrame(a,a)c = b.Td = c.append(df)def highlight_max(s): if s.name == 0: #print(['background-color: yellow' if v else '' for v in is_max]) return ['background-color: yellow']*len(s) else: return ['']*len(s) one = df.style.set_properties(**{ 'border-style': 'solid','border-width':'1px','text-align':'left'})two = one.apply(highlight_max,axis=1)two.to_excel("C:\\Users\\ryanzhang\\Desktop\\test.xlsx",header=False, index=False,)
import pandas as pda = [["ryan","job","can"],["good","you","me"],["ryan","hello","how"],["any","each","where"]]name = ["one","two","three"]index = ["four","five","six","seven"]b = pd.DataFrame(a,index=index,columns=name)print(b,"\n")def need_group(index): if b.loc[index]["one"] =="ryan": return 1 elif b.loc[index]["one"] =="good": return 1 elif b.loc[index]["one"] =="any": return 3c = b.groupby(need_group)for i,j in c: print(i,"\n",j)